skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Grismayer, T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Aims.Global particle-in-cell (PIC) simulations of pulsar magnetospheres are performed with volume-, surface-, and pair-production-based plasma injection schemes to systematically investigate the transition between electrosphere and force-free pulsar magnetospheric regimes. Methods.We present a new extension of the PIC code OSIRIS that can be used to model pulsar magnetospheres with a two-dimensional axisymmetric spherical grid. The subalgorithms of the code and thorough benchmarks are presented in detail, including a new first-order current deposition scheme that conserves charge to machine precision. Results.We show that all plasma injection schemes produce a range of magnetospheric regimes. Active solutions can be obtained with surface and volume injection schemes when using artificially large plasma-injection rates, and with pair-production-based plasma injection for sufficiently large separation between kinematic and pair-production energy scales. 
    more » « less
  2. ABSTRACT The time evolution of high-energy synchrotron radiation generated in a relativistic pair plasma energized by reconnection of strong magnetic fields is investigated with 2D and 3D particle-in-cell (PIC) simulations. The simulations in this 2D/3D comparison study are conducted with the radiative PIC code OSIRIS, which self-consistently accounts for the synchrotron radiation reaction on the emitting particles, and enables us to explore the effects of synchrotron cooling. Magnetic reconnection causes compression of the plasma and magnetic field deep inside magnetic islands (plasmoids), leading to an enhancement of the flaring emission, which may help explain some astrophysical gamma-ray flare observations. Although radiative cooling weakens the emission from plasmoid cores, it facilitates additional compression there, further amplifying the magnetic field B and plasma density n, and thus partially mitigating this effect. Novel simulation diagnostics utilizing 2D histograms in the n-B space are developed and used to visualize and quantify the effects of compression. The n-B histograms are observed to be bounded by relatively sharp power-law boundaries marking clear limits on compression. Theoretical explanations for some of these compression limits are developed, rooted in radiative resistivity or 3D kinking instabilities. Systematic parameter-space studies with respect to guide magnetic field, system size, and upstream magnetization are conducted and suggest that stronger compression, brighter high-energy radiation, and perhaps significant quantum electrodynamic effects such as pair production, may occur in environments with larger reconnection-region sizes and higher magnetization, particularly when magnetic field strengths approach the critical (Schwinger) field, as found in magnetar magnetospheres. 
    more » « less